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Refraction of gravity waves by weak
current gradients
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When deep water surface waves cross an area with variable current, refraction takes
place. If the group velocity of the waves is much larger than the current velocity we
show that the curvature of a ray, {, is given by the simple formula { = ζ/vg . Here ζ
is the vertical component of the current vorticity and vg is the group velocity.

Wave refraction by currents is a classical subject studied for decades (Longuet-
Higgins & Stewart 1961; Whitham 1974; Peregrine 1976). That some simple results
might have remained undetected for so long seems rather unlikely. However, the
result described in the following note may be such a case. It will be demonstrated
that the curvature of a ray on a weak current is given by the ratio between the vertical
component of the current vorticity and the group velocity.

What caught my interest in the subject was a paper by White & Fornberg (1998)
titled: ‘On the chance of freak waves at sea’. There they argue that freak waves
on the open ocean may be due to the refraction of the gravity waves by the weak
and fluctuating ocean currents. With unidirectional incoming waves, they find that
currents with r.m.s. values of the order of 10 cm s−1 having a horizontal scale of
fluctuations & 10 km, give focusing or caustics.

The energy-carrying ocean waves have group velocities, vg, of the order of 10 m s−1,
while a typical current velocity, U = (u, v), is of the order of 10 cm s−1. Thus the ratio
ε ≡ |U |/vg is very small, a fact that we shall take advantage of in the following. It
will also be assumed that we can neglect the vertical shear of the current.

The dispersion relation for gravity waves on deep water is ω = Ω(k, x) where ω is
the frequency, k the wave vector and†

Ω(k, x) =
√
gk + k ·U .

We shall assume that the current field can be considered time independent, meaning
that a characteristic time for the variation of U is much larger than the time it takes
for a gravity wave to traverse a characteristic scale length of the current. This scale
length is assumed much longer than the wavelength such that the approximation of
geometrical optics is valid.

The canonical equations of geometrical optics can be written

dx

dt
=
∂Ω

∂k
,

dk

dt
= −∂Ω

∂x
. (1)

Consider a ray x(s), that is a wave group trajectory, where s is the arclength from

some initial point x(0). Let t be the unit tangent to the ray and k̂ the unit vector

† It should be pointed out that the result described in the following does not depend on the
particular dispersion relation for gravity waves. It is valid for gravity–capillary waves for example.
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along k. We then have

t =
∂Ω

∂k

/∣∣∣∣∂Ω∂k
∣∣∣∣ =

U + vg
|U + vg| =

u+k̂

|u+k̂| , (2)

where u = U/|vg| = U/vg and vg = 1
2

√
g/k k̂ is the group velocity in the absence of

currents.
The right-hand side of (2) is then expanded in ε ≡ |u| � 1 to give

t = k̂ + u− u · k̂k̂ + O(ε2) (3)

which shows that t and k̂ differ by the vector u− u · k̂k̂ which is normal to k̂ and of
order ε. Taking the time derivative of (3) we have

dt

dt
=

dk̂

dt
+

dx

dt
· ∇u · (I − k̂k̂) + O(ε2), (4)

where I is the unit dyadic. Since we are considering a steady-state situation (u time
independent, and ω = constant) we change from the time t to the arclength s as the
free variable. Equation (4) can then be written

{n =
dk̂

ds
+ t · ∇u · nn+ O(ε2), (5)

where { is the ray curvature and n is the unit vector normal to the ray such that (t, n)

is a right-handed system. The dyadic (I − k̂k̂) in equation (4), which occurs in an O(ε)
term, has been replaced by the dyadic nn which differs from the former to order ε

(since t and k̂ differ by that amount). Thus this substitution is correct to O(ε2).
From the second of the canonical equations (1) we have

dk̂

dt
k +

dk

dt
k̂ = −∇U · k̂k.

In the above equation take the scalar product of each side with n. The second term

on the left-hand side will then be O(ε2) since k̂ · n and dk/dt are both O(ε). Changing
from t to s as before we obtain

dk̂

ds
· n = −n · ∇u · t + O(ε2). (6)

Now combining (5) and (6) we obtain

{ = t · (∇u− ∇̃u) · n+ O(ε2), (7)

where a tilde means the transpose of the dyadic. So if ζ denotes the vertical component
of the current vorticity, i.e.

ζ =
∂v

∂x
− ∂u

∂y

we obtain from equation (7) the beautiful result

{ =
ζ

vg
+ O(ε2).

This has at least two quite surprising aspects. To order ε we have that
(i) a potential velocity field gives no refraction;
(ii) at any given point the ray curvature { is independent of the ray direction.



Refraction of gravity waves by weak current gradients 159

An example of (i) is given by the irrotational current field U = (u(x), 0). It can
easily be shown that, while the waves are refracted by an O(ε) angular variation in k
due to the current, the ray paths themselves remain as straight lines, to order ε2.

Note added in proof. It was pointed out by one of the referees (during the publication
process of this paper) that a result similar to, and in some respects more general than,
mine was published in Landau & Lifschitz (1959, p. 216) as a solved problem.

They consider refraction of a sound wave in three dimensions and get the result
(written in my notation)

dt

ds
= − t × ∇× u

c
where c is the speed of sound, and it is assumed that |u| /c� 1. From their result we
deduce that the ray-curvature { is given by

{ =
b · ∇ × u

c

where b is the binormal vector of the ray. Although their result is derived for non-
dispersive waves (sound waves) it is not difficult to show (using the results of this
note) that their result is indeed valid also for dispersive waves under the substitution
c→ vg .

This work was done while the author was visiting Scripps Institution of Oceanog-
raphy. I am grateful for the hospitality of professor Ken Melville and his colleagues.
Support was given by the Norwegian Research Council through the project nr.
139177/431.
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